Problems and Solutions-VIII

P & S 8

27 December 2024

ECON 205

Problems and Solutions-VIII

27 December 2024

・ロン ・回 と ・ ヨン・

æ

Problem 17.1 (a)

Find the critical points and classify these as local max, local min, or saddle point for the function:

$$f(x,y) = x^4 + x^2 - 6xy + 3y^2.$$

Solution

Calculate the first-order partial derivatives:

$$\frac{\partial f}{\partial x} = 4x^3 + 2x - 6y, \quad \frac{\partial f}{\partial y} = -6x + 6y.$$

Set the partial derivatives to zero:

$$-6x + 6y = 0 \implies x = y.$$

Substitute y = x into $\frac{\partial f}{\partial x} = 0$: $4x^3 + 2x - 6x = 4x^3 - 4x = 0 \implies x(x^2 - 1) = 0.$

Solutions are:

$$x = \pm 1, 0$$
 and $y = \pm 1, 0.$

Thus, the critical points are:

$$(-1, -1), (0, 0), (1, 1).$$

・ロット (雪) (目) (日)

э

Hessian Matrix

The second-order partial derivatives are:

$$\frac{\partial^2 f}{\partial x^2} = 12x^2 + 2, \quad \frac{\partial^2 f}{\partial y^2} = 6, \quad \frac{\partial^2 f}{\partial x \partial y} = -6$$

The Hessian matrix is:

$$H(x,y) = \begin{pmatrix} 12x^2 + 2 & -6\\ -6 & 6 \end{pmatrix}.$$

Classification at (-1, -1)

$$H(-1,-1) = \begin{pmatrix} 14 & -6 \\ -6 & 6 \end{pmatrix}.$$

1st LPM: 14. 2nd LPM: det(H(-1, -1)) = (14)(6) - (-6)(-6) = 60. The Hessian is positive definite, so (-1, -1) is a local minimum.

Classification at (1,1)

$$H(1,1) = \begin{pmatrix} 14 & -6 \\ -6 & 6 \end{pmatrix}.$$

1st LPM: 14. 2nd LPM: det(H(1, 1)) = (14)(6) - (-6)(-6) = 60. The Hessian is positive definite, so (1, 1) is a local minimum.

Classification at (0,0)

$$H(0,0) = \begin{pmatrix} 2 & -6\\ -6 & 6 \end{pmatrix}.$$

1st LPM: 2. **2nd LPM**: det(H(0,0)) = (2)(6) - (-6)(-6) = -28. The Hessian is indefinite, so (0,0) is a saddle point.

\sim	\sim	N	0	n	5
 v	v	1.4		υ.	2

Problem 17.1 (b)

Find the critical points and classify these as local max, local min, or saddle point for the function:

$$f(x,y) = x^{2} - 6xy + 2y^{2} + 10x + 2y + 5.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Solution

Calculate the first-order partial derivatives:

$$\frac{\partial f}{\partial x} = 2x - 6y + 10, \quad \frac{\partial f}{\partial y} = -6x + 4y + 2.$$

Set the partial derivatives to zero:

$$2x - 6y + 10 = 0$$
 and $-6x + 4y + 2 = 0$.

From the first equation:

$$2x - 6y = -10 \implies x = 3y - 5.$$

Substitute x = 3y - 5 into the second equation:

 $-6(3y-5) + 4y + 2 = 0 \implies -18y + 30 + 4y + 2 = 0 \implies -14y + 32 = 0 \implies y = \frac{16}{7}.$

Solution

Substitute
$$y = \frac{16}{7}$$
 into $x = 3y - 5$:
 $x = 3\left(\frac{16}{7}\right) - 5 = \frac{48}{7} - 5 = \frac{13}{7}.$

Thus, the critical point is:

$$\left(\frac{13}{7},\frac{16}{7}\right).$$

ECON 205	-	~	-				-
			r 1	•••		11	
		0	ິ	1.8	~	U	

・ロト ・回ト ・ヨト ・ヨト

æ

Hessian Matrix

The second-order partial derivatives are:

$$\frac{\partial^2 f}{\partial x^2} = 2, \quad \frac{\partial^2 f}{\partial y^2} = 4, \quad \frac{\partial^2 f}{\partial x \partial y} = -6.$$

The Hessian matrix is:

$$H(x,y) = \begin{pmatrix} 2 & -6\\ -6 & 4 \end{pmatrix}.$$

Classification at $\left(\frac{13}{7}, \frac{16}{7}\right)$

Compute the determinant of the Hessian:

$$\det(H) = (2)(4) - (-6)(-6) = 8 - 36 = -28.$$

Since the determinant is negative, the Hessian is **indefinite**, and the critical point $\left(\frac{13}{7}, \frac{16}{7}\right)$ is a **saddle point**.

ECON 205

Problem 17.1 (d)

Find the critical points and classify these as local max, local min, or saddle point for the function:

$$f(x,y) = 3x^4 + 3x^2y - y^3.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Solution to Problem 17.1 (d)

$$f(x,y) = 3x^4 + 3x^2y - y^3$$

First Order Partial Derivatives

$$f_x = 12x^3 + 6xy, \quad f_y = 3x^2 - 3y^2$$

Solve for Critical Points ($f_x = 0, f_y = 0$) From $f_y = 0$, we get:

$$3x^2 - 3y^2 = 0 \implies x^2 = y^2 \implies y = \pm x.$$

Solution to Problem 17.1 (d)

From $f_x = 0$, we get:

$$12x^3 + 6xy = 6x(2x^2 + y) = 0.$$

• If
$$x = 0$$
, then $y = 0$. Critical point: $(0, 0)$.
• If $2x^2 + y = 0$, substituting $y = -2x^2$ into $y = \pm x$:
• If $y = x, -2x^2 = x \implies x(2x+1) = 0 \implies x = 0 \text{ or } x = -\frac{1}{2}$.
Critical point: $\left(-\frac{1}{2}, -\frac{1}{2}\right)$.
• If $y = -x, -2x^2 = -x \implies x(2x-1) = 0 \implies x = 0 \text{ or } x = \frac{1}{2}$.
Critical point: $\left(\frac{1}{2}, -\frac{1}{2}\right)$.

Critical Points:

$$(0,0), \left(-\frac{1}{2}, -\frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}\right).$$

・ロ・・ (日・・ 日・・ 日・・

æ

Solution to Problem 17.1 (d)

Second Order Partial Derivatives and Hessian

$$f_{xx} = 36x^2 + 6y, \quad f_{yy} = -6y, \quad f_{xy} = f_{yx} = 6x.$$

The Hessian matrix is:

$$H(x,y) = \begin{bmatrix} 36x^2 + 6y & 6x \\ 6x & -6y \end{bmatrix}.$$

Classify Critical Points

• At (0,0):

$$H(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

-	\sim	\sim	N I	0	n	
			IN	2	• 2	

・ロン ・四 と ・ 回 と ・ 回 と

Solution to Problem 17.1 (d)

Determinant = 0, Hessian is indeterminate. Since $f(0, y) = -y^3$, (0, 0) is a saddle point.

• At $\left(-\frac{1}{2}, -\frac{1}{2}\right)$: $H\left(-\frac{1}{2}, -\frac{1}{2}\right) = \begin{bmatrix} 6 & -3\\ -3 & 3 \end{bmatrix}$.

Determinant = 9 > 0, trace = 9 > 0, Hessian is **positive definite**. $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ is a **local minimum**. • At $\left(\frac{1}{2}, -\frac{1}{2}\right)$: $H\left(\frac{1}{2}, -\frac{1}{2}\right) = \begin{bmatrix} 6 & 3\\ 3 & 3 \end{bmatrix}$.

Determinant = 9 > 0, trace = 9 > 0, Hessian is **positive definite**. $\left(\frac{1}{2}, -\frac{1}{2}\right)$ is a **local minimum**.

Solution to Problem 17.1 (d)

Conclusion:

• (0,0): Saddle point.

•
$$\left(-\frac{1}{2},-\frac{1}{2}\right)$$
: Local minimum.
• $\left(\frac{1}{2},-\frac{1}{2}\right)$: Local minimum.

э

イロト イヨト イヨト イヨト