One Variable Calculus-V

Lecture 5

25 October 2024

\sim	\sim	N I	01	20
U	U	IN	21	JC

One Variable Calculus-V

25 October 2024

・ロン ・回 と ・ ヨン・

æ

Index

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

- In the last chapters, we dealt exclusively with relationships expressed by polynomial functions or by quotients of polynomial functions.
- However, in many economic models, the function which naturally models the growth of a given economic or financial variable over time has the independent variable *t* appearing as an *exponent*; for example, $f(t) = 2^t$

Example

• These exponential functions occur naturally, for example, as models for the amount of money in an interest-paying savings account for the amount of debt in fixed-mortgage account after *t* years

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

- First, we studied polynomials and rational functions and their generalizations of fractional and negative exponents all function constructed by applying the usual arithmetic operations to the monomials ax^k .
- We now enlarge the class of functions under the study by including those functions in which the variable *x* appears as an *exponent*. These functions are naturally called **exponential functions**.

Example

• A simple example is $f(x) = 2^x$, a function whose domain is all the real numbers

	-				-	
			•••			
				~		-
_	-	-		_	•	

A D A A B A A B A A B A

Recall that:

- **(**) if x is a positive integer, 2^x means "multiply 2 by itself x times"
- (2) if $x = 0, 2^0 = 1$, by definition
- **i** f $x = 1/n, 2^{1/n} = \sqrt[n]{2}$, the *n*th root of 2
- S if x = m/n, $2^{m/n} = (\sqrt[n]{2})^m$, the *m*th power of the *n*th root of 2
- **(**) if x is a negative number, 2^x means $1/2^{|x|}$, the reciprocal of $2^{|x|}$

In these cases, the number 2 is called the **base** of the exponential function.

\sim	\sim	NI	0	n	E
J	U	IN	~	υ	÷,

The Number e

- The number e plays the same fundamental role in economics and finance that the number π plays in geometry.
- In particular, the function $f(x) = e^x$ is called the **exponential function** and is frequently written as exp(x).
- Since 2 < x < 3, the graph of $exp(x) = e^x$ is shaped like

ECON 205

6/23

Theorem 5.1

As
$$n \to \infty$$
, the sequence $\left(1 + \frac{1}{n}\right)^n$ converges to a limit denoted by the symbol *e*.
Furthermore,

$$\lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = e^k$$

If one deposits A dollars in an account which pays annual interest at rate r compounded continuously, then after t years the account will grow to Ae^{rt} dollars.

Logarithm

• Consider a general exponential function, $y = a^x$, with base a > 1. Such an exponential function is strictly increasing:

$$x_1 > x_2 \implies a^{x_1} > a^{x_2}$$

In words, the more times you multiply a by itself, the bigger it gets.

- As we pointed out in Theorem 4.1, strictly increasing functions have natural inverses.
- Recall that the inverse of the function y = f(x) is the function obtained by solving y = f(x) for x in terms of y. For example, for a > 0, the inverse of the increasing linear function f(x) = ax + b is the linear function g(y) = (1/a)(y b), which is computed by solving the equation y = ax + b for x in terms of y:

$$y = ax + b \quad \Leftrightarrow \quad x = \frac{1}{a}(y - b)$$

• In a sense, the inverse g of f undoes the operation of f, so that

$$g(f(x)) = x$$

Logarithm

- We cannot compute the inverse of the increasing exponential function $f(x) = a^x$ explicitly because we can't solve $y = a^x$ for x in terms of y, as we did in previous slide.
- However, this inverse function is important enough that we give it name. We call it the **base** *a* **logarithm** and write

$$y = log_a(z) \quad \Leftrightarrow \quad a^y = z$$

• The **logarithm** of *z*, by definition, is the power to which one must raise *a* to yield *z*. It follows immediately from this definition that

$$a^{\log_a(z)} = z$$
 and $\log_a(a^z) = z$

-	\sim	\sim		0	~ -
		U	IN	2	0.5

9/23

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

• The logarithm of 1000 is that power of 10 which yields 1000. Since $10^3 = 1000$, $\log_{10} 1000 = 3 \implies \log_{10} 10^3 = 3$

(a) $\log_{10} 100,000 =$? Since $100,000 = 10^5 \implies \log_{10} 100,000 = 5$

 $\begin{array}{l} \textcircled{0} \quad \log_{10} 10 =? \\ \textbf{Since } 10^1 = 10 \implies \log_{10} 10 = 1 \end{array}$

 $\begin{array}{l} \bullet \quad \log_{10} 1 =? \\ \text{Since } 10^0 = 1 \implies \log_{10} 1 = 0 \end{array}$

ECON 205	-	~	-				-
			r 1	•••		11	
		0	ິ	1.8	~	υ	

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Base *e* Logarithm

• Since the exponential function e^x has all the properties that 10^x has, it also has an inverse. Its inverse works the same way that $\log x$ does. Mirroring the fundamental role that e plays in applications, the inverse of e^x is called the **natural logarithm** function and is written as $\ln x$. Formally,

$$\ln x = y \quad \Leftrightarrow \quad e^y = x$$

• ln *x* is the power to which one must raise *e* to get *x*. This definition can be summarized by the equations

$$e^{\ln x} = x$$
 and $\ln e^x = x$

Example

•
$$lne = 1$$
 since $e^1 = e$

2
$$ln1 = 0$$
 since $e^0 = 1$

3
$$ln40 = 3.688...$$
 since $e^{3.688...} = 40$

-	~	0		0	~	-
н	0	O	IN	2	U	h

ヘロト 人間 とくほ とくほとう

Five Basic properties of Exponential Function

- $a^r \cdot a^s = a^{r+s}$
- $a^{-r} = 1/a^r$
- $\bigcirc \ a^r/a^s = a^{r-s}$
- $(a^r)^s = a^{r \cdot s}$

($a^0 = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The five properties of exponential functions are mirrored by five corresponding properties of the logarithmic functions:

- $\textcircled{0} \ \log(r \cdot s) = \log(r) + \log(s)$
- log(1/s) = -log(s)
- log(r/s) = log(r) log(s)
- $logr^s = (s)log(r)$
- log1 = 0

The fifth property of logs follows directly from the the fifth property of a^x and the fact that a^x and log_a are inverses of each other.

			1040
ECON 205	One Variable Calculus-V	25 October 2024	14/23

Example 1

To solve the equation $2^{5x} = 10$ for x, we take the logarithm of both sides:

$$\log(2^{5x}) = \log(10)$$
 or $5x \cdot \log(2) = 1$

It follows that

$$x = \frac{1}{5\log(2)} \approx 0.6644$$

-	~	0		0	~	-
н	0	O	IN	2	U	h

Example 2

To solve $2e^{6x} = 18$, we follow these steps:

Isolate the exponential term:

$$e^{6x} = \frac{18}{2} = 9$$

Take the natural logarithm:

$$\ln(e^{6x}) = \ln(9)$$

(a) Apply $\ln(a^b) = b \ln(a)$:

$$6x = \ln(9)$$

Solve for x:

$$x = \frac{\ln(9)}{6}$$

• Further simplify $(9 = 3^2)$:

$$x = \frac{2\ln(3)}{6} = \frac{\ln(3)}{3}$$

Thus, the solution is:

$$x = \frac{\ln(9)}{6}$$
 or $x = \frac{\ln(3)}{3}$

ECON 205

One Variable Calculus-V

Derivatives of Exponential and Logarithm

Theorem 5.2: The functions e^x and $\ln x$ are continuous functions on their domains and have continuous derivatives of every order. Their first derivatives are given by:

(a)
$$(e^x)' = e^x$$

(b)
$$(\ln x)' = \frac{1}{x}$$

If u(x) is a differentiable function, then:

(C)
$$(e^{u(x)})' = e^{u(x)} \cdot u'(x)$$

(d)
$$(\ln u(x))' = \frac{u'(x)}{u(x)}$$
 if $u(x) > 0$

Example 1

Find the derivative of e^{5x}

To differentiate e^{5x} , we use the chain rule. Recall that the derivative of $e^{u(x)}$ is $e^{u(x)} \cdot u'(x)$, where u(x) is a differentiable function.

In this case, u(x) = 5x. The derivative of 5x is 5. So, applying the chain rule:

$$\frac{d}{dx}e^{5x} = e^{5x} \cdot \frac{d}{dx}(5x) = e^{5x} \cdot 5$$

Thus, the derivative is:

$$\frac{d}{dx}e^{5x} = 5e^{5x}$$

Therefore, the derivative of e^{5x} is $5e^{5x}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example 2

Find the derivative of $5e^{x^2}$

To differentiate e^{x^2} , we use the chain rule. Recall that the derivative of $e^{u(x)}$ is $e^{u(x)} \cdot u'(x)$, where u(x) is a differentiable function.

In this case, $u(x) = x^2$. The derivative of x^2 is 2x. So, applying the chain rule:

$$\frac{d}{dx}5e^{x^{2}} = 5e^{x^{2}} \cdot \frac{d}{dx}(x^{2}) = 5e^{x^{2}} \cdot 2x$$

Thus, the derivative is:

$$\frac{d}{dx}e^{x^2} = 5 \cdot 2xe^{x^2}$$

Therefore, the derivative of e^{x^2} is $10xe^{x^2}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example 3

Find the derivative of $\ln(x^2)$

To differentiate $\ln(x^2)$, we use the chain rule for logarithms. Recall that if u(x) is a differentiable function, then:

$$\frac{d}{dx}\ln(u(x)) = \frac{u'(x)}{u(x)}$$

In this case, we have $u(x) = x^2$. First, find the derivative of x^2 :

$$u'(x) = \frac{d}{dx}(x^2) = 2x$$

Applying the chain rule:

$$\frac{d}{dx}\ln(x^2) = 2x \cdot \frac{1}{x^2}$$

Therefore, the derivative of $\ln(x^2)$ is:

$$\frac{d}{dx}\ln(x^2) = \frac{2}{x}$$

Example 4

Find the derivative of $(\ln x)^2$

To differentiate $(\ln x)^2$, we apply the chain rule. The chain rule states that if f(g(x)) is a composition of functions, then:

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

Here, we let $u = \ln x$ (the "inside" function), so the function becomes u^2 (the "outside" function). The derivative of u^2 with respect to u is 2u, and the derivative of $\ln x$ with respect to x is $\frac{1}{x}$. Thus, applying the chain rule:

$$\frac{d}{dx}(\ln x)^2 = 2 \cdot \ln x \cdot \frac{1}{x}$$

Therefore, the derivative is:

$$\frac{d}{dx}(\ln x)^2 = \frac{2\ln x}{x}$$
 , the derivative of $(\ln x)^2$ is $\frac{2\ln x}{x}.$

Hence

25 October 2024

To compute the derivative of the general exponential function $y = b^x$

Derivatives of Exponential and Logarithm

Theorem 5.3: For any fixed positive base *b*:

 $(b^x)' = \ln(b) \cdot b^x$

	~	\sim		0	~	
н	0	U	IN	2	U	r.
					-	

Example

Find the derivative of 10^x

To differentiate 10^x , we use the general rule for derivatives of exponential functions. Recall that for any constant base a, the derivative of a^x is:

$$\frac{d}{dx}a^x = \ln(a) \cdot a^x$$

In this case, a = 10. Therefore, the derivative of 10^x is:

$$\frac{d}{dx}10^x = \ln(10) \cdot 10^x$$

Hence, the derivative of 10^x is $\ln(10) \cdot 10^x$.

F	C	n	N	2	n	F
					۲	~