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Optimization

Unconstrained Optimization

Introduction
1 A point x∗ ∈ U is a maximum of F on U if:

F (x∗) ≥ F (x) for all x ∈ U.

2 x∗ ∈ U is a strict maximum if x∗ is a maximum and:

F (x∗) > F (x) for all x ̸= x∗ in U.

3 x∗ ∈ U is a local (or relative) maximum of F if there exists a ball Br(x
∗) about

x∗ such that:
F (x∗) ≥ F (x) for all x ∈ Br(x

∗) ∩ U.

4 x∗ ∈ U is a strict local maximum of F if there exists a ball Br(x
∗) about x∗ such

that:
F (x∗) > F (x) for all x ̸= x∗ in Br(x

∗) ∩ U.
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Optimization

Unconstrained Optimization

Introduction
A point x∗ is a local maximum if there are no nearby points where F takes on a
larger value.

A global maximum or absolute maximum occurs when x∗ is the maximum of F
over the entire domain U , not just locally.
To emphasize precision:

▶ We say x∗ is a maximizer or maximum point of F .
▶ Alternatively, F has its maximum value at x∗.

The term ”max” is often used as a convenient shorthand for ”maximum.”

ECON 205 Optimization 27 December 2024 4 / 24



Optimization

First Order Condition

Critical Points and First Order Conditions
For a function f of one variable, the first-order condition for x∗ to be a maximum or
minimum is:

f ′(x∗) = 0,

meaning x∗ is a critical point of f .

x∗ must lie in the interior of the domain of f (not at the endpoints).

For a function F of n variables, this extends to the partial derivatives:

∂F

∂xi
(x∗) = 0 for each i.

x∗ is an interior point of the domain of F if there exists a whole ball Br(x
∗) about

x∗ within the domain.

Theorem 17.1

Let F : U → R be a C1 function defined on a subset U of Rn. If x∗ is a local maximum
or minimum of F in U and x∗ is an interior point of U , then:

∂F

∂xi
(x∗) = 0 for i = 1, . . . , n. (1)
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Optimization

First Order Condition

Example: First Order Condition

To find the local maxima and minima of F (x, y) = x3 − y3 + 9xy, compute the
first-order partial derivatives and set them to zero:

∂F

∂x
= 3x2 + 9y = 0,

∂F

∂y
= −3y2 + 9x = 0. (2)

Solution

From
∂F

∂x
= 0, we find:

y = −1

3
x2.

Substitute this into
∂F

∂y
= 0:

0 = −3y2 + 9x = −3

(
−1

3
x2

)2

+ 9x = −1

3
x4 + 9x.
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Optimization

First Order Condition

Solution (cont.)
Simplify and solve:

x(27− x3) = 0 =⇒ x = 0 or x = 3.

For x = 0, y = −1

3
(0)2 = 0, so one critical point is (0, 0).

For x = 3, y = −1

3
(3)2 = −3, so the other critical point is (3,−3).

Conclusion
At this stage, the candidates for local maxima or minima of F are:

(0, 0) and (3,−3).

Further analysis is required to determine whether these points are maxima or minima.
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Optimization

Second Order Conditions

Definition
As with functions of one variable, the n-vector x∗ is a critical point of a function
F (x1, . . . , xn) if x∗ satisfies:

∂F

∂xi
(x∗) = 0 for i = 1, . . . , n. (3)

Hessian Matrix and Critical Points

The critical points of F (x, y) = x3 − y3 +9xy in Example 17.1 are (0, 0) and (3,−3). To
determine whether these points are maxima or minima, we use the second derivatives
of F .
A C2 function of n variables has n2 second-order partial derivatives at each point in its
domain. These derivatives are combined into the Hessian matrix of F :

D2F (x∗) =


∂2F

∂x2
1

(x∗) · · · ∂2F

∂x1∂xn
(x∗)

...
. . .

...
∂2F

∂xn∂x1
(x∗) · · · ∂2F

∂x2
n

(x∗)

 . (4)

Since cross-partials are equal for a C2 function (Theorem 14.5), D2F (x∗) is a
symmetric matrix.
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Optimization

The Hessian Matrix

Definition
The Hessian matrix is a square matrix of second-order partial derivatives of a
scalar-valued function. For a function F (x1, x2, . . . , xn), the Hessian matrix at a point
x∗ is:

D2F (x∗) =



∂2F

∂x2
1

∂2F

∂x1∂x2
· · · ∂2F

∂x1∂xn

∂2F

∂x2∂x1

∂2F

∂x2
2

· · · ∂2F

∂x2∂xn

...
...

. . .
...

∂2F

∂xn∂x1

∂2F

∂xn∂x2
· · · ∂2F

∂x2
n


.
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Optimization

Optimization

Properties of Hessian Matrix

The Hessian is symmetric if F is C2 (twice continuously differentiable):

∂2F

∂xi∂xj
=

∂2F

∂xj∂xi
.

It is an n× n matrix for a function of n variables.

Hessian Matrix in Optimization

At a critical point x∗ (where ∇F (x∗) = 0):

If D2F (x∗) is positive definite, x∗ is a local minimum.

If D2F (x∗) is negative definite, x∗ is a local maximum.

If D2F (x∗) has both positive and negative eigenvalues, x∗ is a saddle point.
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Optimization

Optimization

Example: Hessian Matrix

Consider the function F (x, y) = x3 − y3 + 9xy. The first-order partial derivatives are:

∂F

∂x
= 3x2 + 9y,

∂F

∂y
= −3y2 + 9x.

For the function F (x, y) = x3 − y3 + 9xy, the Hessian matrix is:

D2F (x, y) =


∂2F

∂x2

∂2F

∂x∂y
∂2F

∂y∂x

∂2F

∂y2

 =

(
6x 9
9 −6y

)
.
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Optimization

Optimization

Example 2: Hessian Matrix

Consider the function F (x, y) = x2 + y2 − 4xy. The first-order partial derivatives are:

∂F

∂x
= 2x− 4y,

∂F

∂y
= 2y − 4x.

For the function F (x, y) = x2 + y2 − 4xy, the Hessian matrix is:

D2F (x, y) =


∂2F

∂x2

∂2F

∂x∂y
∂2F

∂y∂x

∂2F

∂y2

 =

(
2 −4
−4 2

)
.
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Optimization

Unconstrained Optimization

Sufficient Conditions
1 The second-order condition for a critical point x∗ of a function f on R1 to be a

maximum is that the second derivative f ′′(x∗) be negative.
2 For a function F of n variables, the second-order condition is that the second

derivative D2F (x∗) be negative definite as a symmetric matrix at the critical point
x∗.

3 Similarly, the second-order condition for a critical point x∗ of a function f of one
variable to be a local minimum is that f ′′(x∗) be positive.

4 The analogous second-order condition for an n-dimensional critical point x∗ to be
a local minimum is that the Hessian of F at x∗, D2F (x∗), be positive definite.
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Optimization

Unconstrained Optimization

Theorem 17.2

Let F : U → R1 be a C2 function whose domain is an open set U in Rn. Suppose that
x∗ is a critical point of F . Then:

1 If the Hessian D2F (x∗) is a negative definite symmetric matrix, then x∗ is a
strict local maximum of F .

2 If the Hessian D2F (x∗) is a positive definite symmetric matrix, then x∗ is a
strict local minimum of F .

3 If D2F (x∗) is indefinite, then x∗ is neither a local maximum nor a local minimum
of F .

Definition: Saddle Point

A critical point x∗ of F for which the Hessian D2F (x∗) is indefinite is called a saddle
point of F .

It is graph is saddle shaped represented by:

F (x1, x2) = x2
1 − x2

2,
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Optimization

Unconstrained Optimization

Theorem 17.3

Let F : U → R1 be a C2 function whose domain is an open set U in Rn. Suppose that:

∂F

∂xi
(x∗) = 0 for i = 1, . . . , n,

and that the n leading principal minors of D2F (x∗) alternate in sign:∣∣Fx1x1

∣∣ < 0,∣∣∣∣Fx1x1 Fx1x2

Fx2x1 Fx2x2

∣∣∣∣ > 0,∣∣∣∣∣∣
Fx1x1 Fx1x2 Fx1x3

Fx2x1 Fx2x2 Fx2x3

Fx3x1 Fx3x2 Fx3x3

∣∣∣∣∣∣ < 0, . . .

at x∗. Then, x∗ is a strict local maximum of F .
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Optimization

Unconstrained Optimization

Theorem 17.4

Let F : U → R1 be a C2 function whose domain is an open set U in Rn. Suppose that:

∂F

∂xi
(x∗) = 0 for i = 1, . . . , n,

and that the n leading principal minors of D2F (x∗) are all positive:∣∣Fx1x1

∣∣ > 0,∣∣∣∣Fx1x1 Fx1x2

Fx2x1 Fx2x2

∣∣∣∣ > 0,∣∣∣∣∣∣
Fx1x1 Fx1x2 Fx1x3

Fx2x1 Fx2x2 Fx2x3

Fx3x1 Fx3x2 Fx3x3

∣∣∣∣∣∣ > 0, . . .

at x∗. Then, x∗ is a strict local minimum of F .
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Optimization

Unconstrained Optimization

Theorem 17.5

Let F : U → R1 be a C2 function whose domain is an open set U in Rn. Suppose that:

∂F

∂xi
(x∗) = 0 for i = 1, . . . , n,

and that some nonzero leading principal minors of D2F (x∗) violate the sign patterns in
the hypotheses of Theorems 17.3 and 17.4. Then, x∗ is a saddle point of F ; it is
neither a local maximum nor a local minimum.
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Optimization

Principal Minors

Definition
Let A be an n× n matrix. A k × k submatrix of A formed by deleting n− k columns,
say columns i1, i2, . . . , in−k, and the same n− k rows, rows i1, i2, . . . , in−k, from A is
called a k-th order principal submatrix of A. The determinant of a k × k principal

submatrix is called a k-th order principal minor of A.
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Optimization

Optimization

Example: Principal Minors

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

There is one third-order principal minor: det(A).
There are three second-order principal minors:

1

∣∣∣∣a11 a12
a21 a22

∣∣∣∣, formed by deleting column 3 and row 3 from A.

2

∣∣∣∣a11 a13
a31 a33

∣∣∣∣, formed by deleting column 2 and row 2 from A.

3

∣∣∣∣a22 a23
a32 a33

∣∣∣∣, formed by deleting column 1 and row 1 from A.

There are three first-order principal minors:
1

∣∣a11∣∣, formed by deleting the last 2 rows and columns.
2

∣∣a22∣∣, formed by deleting the first and third rows and the first and third columns.
3

∣∣a33∣∣, formed by deleting the first 2 rows and columns.
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Optimization

Leading Principal Minors

Definition
Let A be an n× n matrix. The k-th order principal submatrix of A obtained by deleting
the last n− k rows and the last n− k columns from A is called the k-th order
leading principal submatrix of A.
Its determinant is called the k-th order leading principal minor of A. We will denote
the k-th order leading principal submatrix by Ak and the corresponding leading
principal minor by |Ak|.
An n× n matrix has n leading principal submatrices:

the top-leftmost 1× 1 submatrix,

the top-leftmost 2× 2 submatrix,

etc.

For the general 3× 3 matrix of Example 16.2, the three leading principal minors are:

|a11|,
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ,
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ .
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Optimization

Leading Principal Minors

Definition
Let A be an n× n matrix. The k-th order principal submatrix of A obtained by deleting
the last n− k rows and the last n− k columns from A is called the k-th order
leading principal submatrix of A.
Its determinant is called the k-th order leading principal minor of A. We will denote
the k-th order leading principal submatrix by Ak and the corresponding leading
principal minor by |Ak|.
An n× n matrix has n leading principal submatrices:

the top-leftmost 1× 1 submatrix,

the top-leftmost 2× 2 submatrix,

etc.

For the general 3× 3 matrix of Example 16.2, the three leading principal minors are:

|a11|,
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ,
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ .
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Optimization

Unconstrained Optimization

Example: Critical Points
1 Compute the first-order partial derivatives:

∂F

∂x
and

∂F

∂y
.

2 Set the partial derivatives to zero:

∂F

∂x
= 0,

∂F

∂y
= 0.

Consider the function F (x, y) = x3 − y3 + 9xy:

∂F

∂x
= 3x2 + 9y,

∂F

∂y
= −3y2 + 9x.

3x2 + 9y = 0, −3y2 + 9x = 0.

Critical points are:
(0, 0) and (3,−3).
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Optimization

Unconstrained Optimization

Leading Principal Minors (LPMs)
To find the k-th order Leading Principal Minor (LPM):

1 Extract the top-left k × k submatrix from the Hessian matrix H.
2 Compute the determinant of this k × k submatrix.

Example (cont.)
At (0, 0):

H(0, 0) =

(
0 9
9 0

)
.

- 1st LPM: Determinant of the top-left 1× 1 submatrix:

1st LPM = det
(
0
)
= 0.

- 2nd LPM: Determinant of the entire 2× 2 matrix:

2nd LPM = det

(
0 9
9 0

)
= (0)(0)− (9)(9) = −81.
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Optimization

Unconstrained Optimization

Example (cont.)
- The Hessian is indefinite, so (0, 0) is a saddle point.
At (3,−3):

H(3,−3) =

(
18 9
9 18

)
.

- 1st LPM: Determinant of the top-left 1× 1 submatrix:

1st LPM = det
(
18

)
= 18.

- 2nd LPM: Determinant of the entire 2× 2 matrix:

2nd LPM = det

(
18 9
9 18

)
= (18)(18)− (9)(9) = 243.

- The Hessian is positive definite, so (3,−3) is a strict local minimum.
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