Lecture 13

27 December 2024

	N		

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Index

\sim	\sim	Ν	0	n	E

ヘロン 人間 とくほど 人間と

Introduction

• A point $x^* \in U$ is a **maximum** of F on U if:

 $F(x^*) \ge F(x)$ for all $x \in U$.

2 $x^* \in U$ is a strict maximum if x^* is a maximum and:

 $F(x^*) > F(x)$ for all $x \neq x^*$ in U.

3 $x^* \in U$ is a local (or relative) maximum of F if there exists a ball $B_r(x^*)$ about x^* such that:

 $F(x^*) \ge F(x)$ for all $x \in B_r(x^*) \cap U$.

• $x^* \in U$ is a strict local maximum of F if there exists a ball $B_r(x^*)$ about x^* such that:

 $F(x^*) > F(x)$ for all $x \neq x^*$ in $B_r(x^*) \cap U$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Introduction

- A point x^* is a **local maximum** if there are no nearby points where F takes on a larger value.
- A global maximum or absolute maximum occurs when x^* is the maximum of F over the entire domain U, not just locally.
- To emphasize precision:
 - We say x^* is a **maximizer** or **maximum point** of *F*.
 - Alternatively, F has its **maximum value** at x^* .
- The term "max" is often used as a convenient shorthand for "maximum."

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

First Order Condition

Critical Points and First Order Conditions

• For a function *f* of one variable, the first-order condition for *x*^{*} to be a maximum or minimum is:

$$f'(x^*) = 0$$

meaning x^* is a **critical point** of f.

- x^* must lie in the **interior** of the domain of f (not at the endpoints).
- For a function F of n variables, this extends to the partial derivatives:

$$\frac{\partial F}{\partial x_i}(x^*) = 0 \quad \text{for each } i.$$

• x^* is an interior point of the domain of F if there exists a whole ball $B_r(x^*)$ about x^* within the domain.

Theorem 17.1

Let $F: U \to \mathbb{R}$ be a C^1 function defined on a subset U of \mathbb{R}^n . If x^* is a local maximum or minimum of F in U and x^* is an interior point of U, then:

$$\frac{\partial F}{\partial x}(x^*) = 0 \quad \text{for } i = 1, \dots, n. \tag{1}$$

ECON 205

First Order Condition

Example: First Order Condition

To find the local maxima and minima of $F(x,y) = x^3 - y^3 + 9xy$, compute the first-order partial derivatives and set them to zero:

$$\frac{\partial F}{\partial x} = 3x^2 + 9y = 0, \quad \frac{\partial F}{\partial y} = -3y^2 + 9x = 0.$$
(2)

Solution

• From
$$\frac{\partial F}{\partial x} = 0$$
, we find:
 $y = -\frac{1}{3}x^2$.
Substitute this into $\frac{\partial F}{\partial y} = 0$:
 $0 = -3y^2 + 9x = -3\left(-\frac{1}{3}x^2\right)^2 + 9x = -\frac{1}{3}x^4 + 9x$.

イロン イヨン イヨン -

э

First Order Condition

Solution (cont.)

• Simplify and solve:

ECON 2

$$x(27-x^3)=0 \implies x=0$$
 or $x=3$.

Conclusion

At this stage, the candidates for local maxima or minima of F are:

(0,0) and (3,-3).

Further analysis is required to determine whether these points are maxima or minima.

	4	Þ	< ₽ >		Ē.)			•	2	5
205	Optimization		:	27 C)ecer	nbe	er 20	24		1

7/24

Second Order Conditions

Definition

As with functions of one variable, the *n*-vector x^* is a **critical point** of a function $F(x_1, \ldots, x_n)$ if x^* satisfies:

$$\frac{\partial F}{\partial x_i}(x^*) = 0 \quad \text{for } i = 1, \dots, n.$$

(3)

Hessian Matrix and Critical Points

The critical points of $F(x, y) = x^3 - y^3 + 9xy$ in Example 17.1 are (0, 0) and (3, -3). To determine whether these points are maxima or minima, we use the second derivatives of F.

A C^2 function of *n* variables has n^2 second-order partial derivatives at each point in its domain. These derivatives are combined into the **Hessian matrix** of *F*:

$$D^{2}F(x^{*}) = \begin{pmatrix} \frac{\partial^{2}F}{\partial x_{1}^{2}}(x^{*}) & \cdots & \frac{\partial^{2}F}{\partial x_{1}\partial x_{n}}(x^{*}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}F}{\partial x_{n}\partial x_{1}}(x^{*}) & \cdots & \frac{\partial^{2}F}{\partial x_{n}^{2}}(x^{*}) \end{pmatrix}.$$
(4)
Optimization

ECON 205

The Hessian Matrix

Definition

The **Hessian matrix** is a square matrix of second-order partial derivatives of a scalar-valued function. For a function $F(x_1, x_2, ..., x_n)$, the Hessian matrix at a point x^* is:

$D^2F(x^*) =$	$\begin{pmatrix} \frac{\partial^2 F}{\partial x_1^2} \\ \frac{\partial^2 F}{\partial x_2 \partial x_1} \end{pmatrix}$	$\frac{\partial^2 F}{\partial x_1 \partial x_2} \\ \frac{\partial^2 F}{\partial x_2^2}$	· · · ·	$\frac{\frac{\partial^2 F}{\partial x_1 \partial x_n}}{\frac{\partial^2 F}{\partial x_2 \partial x_n}} \right)$	
D = 1 (w) =	$\begin{pmatrix} \frac{\partial^2 F}{\partial x_n \partial x_1} \end{pmatrix}$	$\frac{\frac{\partial^2 F}{\partial x_n \partial x_2}}{\frac{\partial^2 F}{\partial x_n \partial x_2}}$	·	$\left. \frac{\partial^2 F}{\partial x_n^2} \right).$	

		20	

9/24

・ロット (母) ・ ヨ) ・ ヨ)

Properties of Hessian Matrix

• The Hessian is symmetric if F is C^2 (twice continuously differentiable):

$$\frac{\partial^2 F}{\partial x_i \partial x_j} = \frac{\partial^2 F}{\partial x_j \partial x_i}$$

• It is an $n \times n$ matrix for a function of n variables.

Hessian Matrix in Optimization

At a critical point x^* (where $\nabla F(x^*) = 0$):

- If $D^2F(x^*)$ is positive definite, x^* is a local minimum.
- If $D^2F(x^*)$ is negative definite, x^* is a local maximum.
- If $D^2 F(x^*)$ has both positive and negative eigenvalues, x^* is a saddle point.

E			

・ロット (母) ・ ヨ) ・ ヨ)

Example: Hessian Matrix

Consider the function $F(x, y) = x^3 - y^3 + 9xy$. The first-order partial derivatives are:

$$\frac{\partial F}{\partial x} = 3x^2 + 9y, \quad \frac{\partial F}{\partial y} = -3y^2 + 9x.$$

For the function $F(x, y) = x^3 - y^3 + 9xy$, the Hessian matrix is:

$$D^{2}F(x,y) = \begin{pmatrix} \frac{\partial^{2}F}{\partial x^{2}} & \frac{\partial^{2}F}{\partial x\partial y}\\ \frac{\partial^{2}F}{\partial y\partial x} & \frac{\partial^{2}F}{\partial y^{2}} \end{pmatrix} = \begin{pmatrix} 6x & 9\\ 9 & -6y \end{pmatrix}.$$

		2	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example 2: Hessian Matrix

Consider the function $F(x, y) = x^2 + y^2 - 4xy$. The first-order partial derivatives are:

$$\frac{\partial F}{\partial x} = 2x - 4y, \quad \frac{\partial F}{\partial y} = 2y - 4x.$$

For the function $F(x, y) = x^2 + y^2 - 4xy$, the Hessian matrix is:

$$D^{2}F(x,y) = \begin{pmatrix} \frac{\partial^{2}F}{\partial x^{2}} & \frac{\partial^{2}F}{\partial x\partial y}\\ \frac{\partial^{2}F}{\partial y\partial x} & \frac{\partial^{2}F}{\partial y^{2}} \end{pmatrix} = \begin{pmatrix} 2 & -4\\ -4 & 2 \end{pmatrix}.$$

ECON 205				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Sufficient Conditions

- The second-order condition for a critical point x^{*} of a function f on ℝ¹ to be a maximum is that the second derivative f''(x^{*}) be negative.
- For a function F of n variables, the second-order condition is that the second derivative D²F(x*) be negative definite as a symmetric matrix at the critical point x*.
- Similarly, the second-order condition for a critical point x* of a function f of one variable to be a local minimum is that f''(x*) be positive.
- The analogous second-order condition for an *n*-dimensional critical point x^{*} to be a local minimum is that the Hessian of F at x^{*}, D²F(x^{*}), be positive definite.

Theorem 17.2

Let $F: U \to \mathbb{R}^1$ be a C^2 function whose domain is an open set U in \mathbb{R}^n . Suppose that x^* is a critical point of F. Then:

- If the Hessian $D^2F(x^*)$ is a negative definite symmetric matrix, then x^* is a strict local maximum of F.
- 3 If the Hessian $D^2F(x^*)$ is a positive definite symmetric matrix, then x^* is a strict local minimum of F.
- If $D^2 F(x^*)$ is **indefinite**, then x^* is neither a local maximum nor a local minimum of *F*.

Definition: Saddle Point

A critical point x^* of F for which the Hessian $D^2F(x^*)$ is **indefinite** is called a **saddle point** of F.

It is graph is saddle shaped represented by:

$$F(x_1, x_2) = x_1^2 - x_2^2,$$

ECON 205

Theorem 17.3

Let $F: U \to \mathbb{R}^1$ be a C^2 function whose domain is an open set U in \mathbb{R}^n . Suppose that:

$$\frac{\partial F}{\partial x_i}(x^*) = 0 \quad \text{for } i = 1, \dots, n,$$

and that the *n* leading principal minors of $D^2 F(x^*)$ alternate in sign:

$$\begin{aligned} & |F_{x_1x_1}| < 0, \\ & |F_{x_1x_1} - F_{x_1x_2}| \\ F_{x_2x_1} - F_{x_2x_2}| > 0, \\ F_{x_1x_1} - F_{x_1x_2} - F_{x_1x_3}| \\ F_{x_2x_1} - F_{x_2x_2} - F_{x_2x_3}| < 0, \dots \end{aligned}$$

at x^* . Then, x^* is a strict local maximum of F.

			2	7 [Dec	em	ber	20	24		15/24
•	Þ	ð	Þ	•	æ	Þ		æ	₽	12	500

Theorem 17.4

Let $F: U \to \mathbb{R}^1$ be a C^2 function whose domain is an open set U in \mathbb{R}^n . Suppose that:

$$\frac{\partial F}{\partial x_i}(x^*) = 0 \quad \text{for } i = 1, \dots, n,$$

and that the *n* leading principal minors of $D^2 F(x^*)$ are all positive:

$$\begin{aligned} & |F_{x_1x_1}| > 0, \\ & \left| F_{x_1x_1} & F_{x_1x_2} \\ F_{x_2x_1} & F_{x_2x_2} \right| > 0, \\ & F_{x_1x_1} & F_{x_1x_2} & F_{x_1x_3} \\ F_{x_2x_1} & F_{x_2x_2} & F_{x_2x_3} \\ F_{x_3x_1} & F_{x_3x_2} & F_{x_3x_3} \end{aligned} > 0, \dots$$

at x^* . Then, x^* is a strict local minimum of F.

4	•	• 🗗								- 2	
			2	7 [Dec	eml	ber	202	24		16/24

Theorem 17.5

Let $F: U \to \mathbb{R}^1$ be a C^2 function whose domain is an open set U in \mathbb{R}^n . Suppose that:

$$\frac{\partial F}{\partial x_i}(x^*) = 0 \quad \text{for } i = 1, \dots, n,$$

and that some nonzero leading principal minors of $D^2F(x^*)$ violate the sign patterns in the hypotheses of Theorems 17.3 and 17.4. Then, x^* is a **saddle point** of *F*; it is neither a local maximum nor a local minimum.

イロト イポト イヨト イヨト

Principal Minors

Definition

Let A be an $n \times n$ matrix. A $k \times k$ submatrix of A formed by deleting n - k columns, say columns $i_1, i_2, \ldots, i_{n-k}$, and the same n - k rows, rows $i_1, i_2, \ldots, i_{n-k}$, from A is called a k-th order principal submatrix of A. The determinant of a $k \times k$ principal

submatrix is called a k-th order principal minor of A.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example: Principal Minors

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

- There is one third-order principal minor: det(A).
- There are three second-order principal minors:

 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$, formed by deleting column 3 and row 3 from A.

 $\begin{bmatrix} a_{13} \\ a_{33} \end{bmatrix}$, formed by deleting column 2 and row 2 from A.

 $\begin{bmatrix} a_{23} \\ a_{33} \end{bmatrix}$, formed by deleting column 1 and row 1 from A.

• There are three first-order principal minors:

- $|a_{11}|$, formed by deleting the last 2 rows and columns.
- 2 $|a_{22}|$, formed by deleting the first and third rows and the first and third columns.
 - $|a_{33}|$, formed by deleting the first 2 rows and columns.

\sim	\sim	NI	20	
v	U	IN	24	10

 a_{11}

 a_{31}

 a_{22}

 a_{32}

8

0

3

19/24

Leading Principal Minors

Definition

Let *A* be an $n \times n$ matrix. The *k*-th order principal submatrix of *A* obtained by deleting the **last** n - k rows and the **last** n - k columns from *A* is called the *k*-th order **leading principal submatrix** of *A*.

Its determinant is called the *k*-th order leading principal minor of *A*. We will denote the *k*-th order leading principal submatrix by A_k and the corresponding leading principal minor by $|A_k|$.

An $n \times n$ matrix has n leading principal submatrices:

- the top-leftmost 1×1 submatrix,
- the top-leftmost 2×2 submatrix,
- etc.

For the general 3×3 matrix of Example 16.2, the three leading principal minors are:

$$|a_{11}|, \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Leading Principal Minors

Definition

Let *A* be an $n \times n$ matrix. The *k*-th order principal submatrix of *A* obtained by deleting the **last** n - k rows and the **last** n - k columns from *A* is called the *k*-th order **leading principal submatrix** of *A*.

Its determinant is called the *k*-th order leading principal minor of *A*. We will denote the *k*-th order leading principal submatrix by A_k and the corresponding leading principal minor by $|A_k|$.

An $n \times n$ matrix has n leading principal submatrices:

- the top-leftmost 1×1 submatrix,
- the top-leftmost 2×2 submatrix,
- etc.

For the general 3×3 matrix of Example 16.2, the three leading principal minors are:

$$|a_{11}|, \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example: Critical Points

Compute the first-order partial derivatives:

$$\frac{\partial F}{\partial x}$$
 and $\frac{\partial F}{\partial y}$.

Set the partial derivatives to zero:

$$\frac{\partial F}{\partial x} = 0, \quad \frac{\partial F}{\partial y} = 0.$$

Consider the function $F(x, y) = x^3 - y^3 + 9xy$:

$$\frac{\partial F}{\partial x} = 3x^2 + 9y, \quad \frac{\partial F}{\partial y} = -3y^2 + 9x$$

$$3x^2 + 9y = 0, \quad -3y^2 + 9x = 0.$$

Critical points are:

$$(0,0)$$
 and $(3,-3)$.

ECON 205

Optimization

Leading Principal Minors (LPMs)

To find the *k*-th order Leading Principal Minor (LPM):

- Extract the top-left $k \times k$ submatrix from the Hessian matrix H.
- **②** Compute the determinant of this $k \times k$ submatrix.

Example (cont.)

At (0,0):

$$H(0,0) = \begin{pmatrix} 0 & 9\\ 9 & 0 \end{pmatrix}.$$

- 1st LPM: Determinant of the top-left 1×1 submatrix:

$$1 \text{ st LPM} = \det (0) = 0.$$

- 2nd LPM: Determinant of the entire 2×2 matrix:

2nd LPM = det
$$\begin{pmatrix} 0 & 9 \\ 9 & 0 \end{pmatrix}$$
 = (0)(0) - (9)(9) = -81.

Example (cont.)

- The Hessian is indefinite, so (0,0) is a saddle point. At (3,-3):

$$H(3, -3) = \begin{pmatrix} 18 & 9\\ 9 & 18 \end{pmatrix}$$

- 1st LPM: Determinant of the top-left 1×1 submatrix:

$$1 \text{ st LPM} = \det(18) = 18.$$

- 2nd LPM: Determinant of the entire 2×2 matrix:

2nd LPM = det
$$\begin{pmatrix} 18 & 9\\ 9 & 18 \end{pmatrix}$$
 = (18)(18) - (9)(9) = 243.

- The Hessian is positive definite, so (3, -3) is a strict local minimum.

		N		

(日)